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ABSTRACT
Pattern matching is essential to a wide range of applica-
tions such as network intrusion detection, virus scanning,
etc. Pattern matching algorithms normally rely on state ma-
chines to detect predefined patterns. Recently, parallel pat-
tern matching engines, based on ASICs, FPGAs or network
processors, perform matching with multiple state machines.
The state migration in the matching procedure incurs in-
tensive memory accesses. Thus, it is critical to minimize
the storage of state machines such that they can be fit in
on-chip or other fast memory modules to achieve high-speed
pattern matching. This paper proposes novel optimization
techniques, namely state re-labeling and memory partition,
to reduce state machine storage. The paper also presents ar-
chitectural designs based on the optimization strategy. We
evaluate our design using realistic pattern sets, and the re-
sults show state machine memory reduction up to 80.1%.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
microprocessor/microcomputer applications; C.4 [Perform-
ance of Systems]: design studies; C.1.4 [Parallel Archi-
tectures]: Distributed architectures

General Terms
Algorithms, Design, Performance, Security

Keywords
Pattern Matching, Parallel Processing

1. INTRODUCTION
Pattern matching searches for predefined patterns in data

streams. A pattern, interchangeably called keyword, can be
either a part of a rule of a network intrusion detection, or a
signature string of a virus. The length of a pattern and its
location in the data stream usually vary [7, 9]. A pattern set

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

(or database) can contain thousands of patterns and keep ex-
panding for enforcing new security policies or capturing new
viruses. For example, the rule set of the well-known intru-
sion detection system, Snort[9], contains 2733 patterns as of
Dec 2005, and new patterns are added constantly. Variable
pattern length and location, and increasingly large pattern
sets make pattern matching a challenging task.

Pattern matching algorithms, such as Aho-Corasick[1] and
D2FA [6], rely on state machines whose size is proportional
to the size of pattern databases. Pattern matching takes in
a data stream and follows the state migration until the input
stream is exhausted. There exist lots of studies and several
products on performing pattern searching with ASICs [3,
10], FPGAs [2, 4]. Recently, network processors (NPs) have
also emerged as programmable processing units for pattern
matching [5, 8].

State machines are normally stored in linear memory space,
Pattern matching procedure incurs intensive memory ac-
cesses while traversing state machines. Fast memory ac-
cess time can benefit the performance of pattern matching
significantly. Thus, it is necessary to minimize the storage
requirement of state machines such that they can be put into
on-chip or other fast memory modules to achieve high-speed
pattern matching.

This paper proposes novel schemes to reduce the memory
required to store state machines in a linear memory space.
One scheme is to re-label the states in a state machine such
that the matching states are clustered at the beginning of
a memory space, giving opportunities for compact storage.
The other scheme is to partition state machines and use
separate memory modules to store keywords and next-state
pointers. We then present architectural design using the
proposed schemes. We evaluate the performance of the op-
timization strategies using realistic pattern sets from Snort
[9]. The experiment results show significant reduction (up
to 80.1%) on the memory consumption of state machines.

The paper is organized as follows. Section 2 introduces
the backgound of a parallel pattern matching architecture
and Section 3 motivates our research. Section 4 describes
the proposed optimization schemes. Section 5 presents the
architectural design using the schemes. Section 6 evaluates
the performance of our design and compares it with existing
work. Finally, Section 7 concludes the paper.

2. BACKGROUND
The storage requirement of state machines significantly

affects the performance of pattern matching. Traversing the
state machine introduces intensive memory accesses, thus
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it is desirable that state machines are small enough to fit
in high-speed memory to reduce the memory access time.
There exist research works addressing the state machine
storage issue [10, 8]. Particularly, Tan-Sherwood proposed
to leverage eight bit-level state machines to match eight in-
dividual bits of a byte in parallel, instead of matching byte
by byte. Such bit-level state machines significantly reduce
the number of next states to two (21), whereas a state in the
classical state machine has 256 (28) possible next states.

Fig. 1 depicts a generic architecture of parallel pattern
matching. The pattern matching machine consists of N par-
allel pattern matching engines. Each engine is instructed to
search for a subset of the patterns, thus called Subset En-
gine (SE). A SE consists of multiple processing elements
(PEs) can work in parallel to detect patterns [10, 8]. The
results from PEs are AND-ed to generate the final result of
a SE. Such a pattern matching machine, along with its sub-
set engines, is technology-independent, i.e., it can be based
on different technologies such as ASIC, FPGA or NP. SEs
store state machines in either their local memory or a shared
global memory module.
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Figure 1: A generic parallel pattern matching archi-
tecture.

Both bit-level and byte-level state machines, represented
with state diagrams, are implemented in a linear memory
space in pattern matching system. Making easier to read, we
hide irrelevant edges of state diagram, and draw the diagram
as a trie structure (Fig.2). Fig.2 depicts a bit-level state ma-
chine for an example subset with 16 patterns, along with its
corresponding linear memory layout. The annotations as-
sociated with double-circled nodes in Fig. 2(a) indicate de-
tection of some patterns. In the memory layout (Fig. 2(b)),
each state, represented in a row, consists of keywordID vec-
tors, representing matched patterns, and next-state vectors
(pointers), representing the directed edges. For example,
state 5 in Fig. 2(a) denotes possible matches to patterns p1,
p4 and p9, thus in Fig 2(b), the keywordID field at row 5 has
bit 1, 4 and 9 set to ‘1’. Such a bit vector will be AND-ed
with vectors identified from other PEs to generate the final
result. While this example state machine has 21 states, we
found that the largest state machine for Snort rule set con-
tains 402 states, which requires the PEs be able to hold the
worst case 512 (29) vectors for ASIC based designs. This
introduces substantial memory wastage because not all the
state machines can fill up the storage for worst-case scenario.

3. MOTIVATION OF THE RESEARCH
We are interested to study the memory usage of the key-

wordID and next-state matrix and find out how these two
fields contribute to the total memory usage of state ma-
chines. We again use Snort pattern set and divide it into
subsets in our study. The number of the subsets, and sub-
sequently the number of parallel matching engines, are in-
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keywordID Matrix 1 0
<16> <9> <9>

0 0000 0000 0000 0000 0 1
1 0000 0000 0000 0000 6 2
2 0000 0000 0000 0000 14 3
3 0000 0000 0000 0000 5 4
4 0000 0000 0000 0001 5 4
5 0000 0010 0001 0010 7 10
6 0000 0000 0000 0000 7 10
7 0000 0000 0000 0000 0 8
8 0000 0000 0000 0000 9 0
9 0000 0000 0000 0100 0 0

10 0000 0000 0000 0000 0 11
11 0000 0000 0000 0000 12 0
12 0000 0000 0000 0000 13 20
13 0000 0000 0000 1000 0 0
14 0000 0000 0000 0000 16 15
15 0000 0000 0010 0000 0 17
16 1000 1100 1100 0000 0 0
17 0000 0000 0000 0000 0 18
18 0000 0000 0000 0000 19 0
19 0011 0001 0000 0000 0 0
20 0100 0000 0000 0000 0 0
21 0000 0000 0000 0000 0 0
… … … …

511 0000 0000 0000 0000 0 0
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Figure 2: An example of a bit-level state machine
and its memory layout.

versely related to the size k (i.e. the number of patterns of
a subset). For each subset, a state machine is constructed
and stored in the memory space, and a pattern matching en-
gine is assigned to the state machine. Note that ASIC and
FPGA based designs have to handle the worst case state
machine, i.e., its memory module has to be large enough to
accommodate a state machine with the maximal number of
states.

We plot the memory consumption breakdown in Fig. 3
(a). We study how the total memory usage (y axis) changes
when k (x axis) varies from 8 to 256. The upper and lower
segments of the bars represent the memory usage of keywor-
dID matrix and next-state matrix, respectively. One inter-
esting observation is when k increases, the next-state matrix
memory drops; but the keywordID matrix increases rapidly.
The majority of the memory is spent on storing keywor-
dIDs. Thus, it is indispensable to reduce the memory usage
of keywordID matrix to minimize the total memory usage.
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Figure 3: (a) Memory usage breakdown for keywor-
dID and next-state matrix. (b) Percentage of zero
vectors in keywordID matrix

4. OPTIMIZATION SCHEMES
In this section, we present an optimization technique to

organize state machines memory in a compact fashion. The
technique consists of two steps: state re-labeling and mem-
ory partition.

4.1 State Re-labeling
We are motivated by the results in Fig. 3 (a) to study com-

pact organization of keywordID vectors. We revisit Fig. 2
and find that the keywordID vectors actually contain a large
number of zero vectors, indicating no matching at all. These
vectors correspond to the intermediate nodes along the trie
before reaching any double-circled nodes. In the classical
Aho-Corasick (AC) algorithm, all the nodes in the trie are
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labeled in the sequence when they are created. As a result,
the zero vectors are interleaved with the non-zero vectors as
shown in Fig. 2(b).

We show the percentage of zero vectors among all the
keywordID vectors in Fig. 3(b). These results are obtained
with Snort pattern set. As we can see, the percentage of zero
vectors is consistently high, 59.1% and more, throughout
the range of k under study. This implies that compression
or elimination of such zero vectors can significantly reduce
the memory usage.

We propose to re-label the states after the trie is con-
structed. We re-label the double-circled nodes (matching
nodes, or output states) in the trie shown in Fig. 4 such
that none of their identifiers is larger than those of single-
circled intermediate nodes. As a result, when storing the
state machine in a linear memory space, the keywordID vec-
tors corresponding to the matching nodes are clustered at
the beginning of the keywordID matrix, shown in Fig. 4.
At the same time, the structure of the trie is maintained to
ensure proper state migration.

The state re-labeling is performed after the initial trie
structure is created using Aho-Corasick algorithm, or ac-
tually any other state machine based algorithms. The fol-
lowing pseudo code describes the proposed re-labeling al-
gorithm. The input of the re-labeling algorithm is a table
mapping from patterns to the states, either an intermediate
state or a matching state. Such a table is provided by the
original AC or other state machine based algorithms. The
output of re-labeling is an updated mapping table. It can
been seen that complexity of the re-labeling process is O(n),
i.e. re-labeling introduces little overhead.

k is the amount of patterns per subset;
p(i) is the label of the pattern i;

1. FOR i = 0 to k - 1:
2. Find the matching state of pattern i.
3. IF this matching state has already been relabeled
4. Do nothing.
5. ELSE
6. Re-label this state as i.
7. ENDFOR
8. Re-label the rest states (intermediate states.)
9. Connect the directed edges of the relabeled

automaton by traversing the original trie.

4.2 Memory Partition
After re-labeling, we propose to separate the storage of keywor-

dID matrix from the storage of next-state matrix. This is based
on the observation that the number of non-zero keywordID vec-
tors is bounded by the number of patterns in the subset. When
the AC algorithm constructs a trie, each pattern will be mapped
to a double-circled node, and only be mapped to that double-
circled node (i.e. the matching node). That is, the following
assertion holds.

NkeywordID ≤ Nrules

Therefore, only a k × k matrix is needed to store keywordID
vectors, where k is the amount of patterns in the subset. This
observation is particularly helpful in reducing the local memory
needed for parallel subset engines shown in Fig. 1.

On the other hand, non-null next-state vectors can be arbitrar-
ily more than non-zero keywordID vectors since there can be an
arbitrary number of intermediate or non-matching nodes in the
trie. While these intermediate nodes are necessary to maintain
the trie structure, their associated keywordID vectors are all zeros
(e.g. state 0 and 1 in Fig. 2). In regular memory organization,
the keywordID and next states are tightly coupled. We propose
to separate the storage of keywordID matrix from next-state ma-
trix, as shown in Fig. 4. The k × k bit matrix is used to store
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Figure 4: An example bit-level state machine after
re-labeling, and its separated memory layouts.

keywordID matrix, and the next state matrix resides in an in-
dependent memory module. Thus, the zero keywordID vectors
of the intermediate states are eliminated. We call this technique
“k-Square”.

In fact, the k × k bit matrix can contain zero vectors because
some matching nodes can contain more than one pattern. In such
a case, we need only λ matching nodes, where λ ≤ k. This gives
opportunities to further reduce the memory usage. We can store
only λ non-zero keywordID vectors in one shared global memory
module. We call this technique “k-Lamda”.

5. ARCHITECTURE
We present the architectural design based on the above pro-

posed optimization techniques in this section.
The State Processing Element (SPE) is shown in Fig. 5. A

SPE consists of a Next State Decision Unit (NSDU), an Output
State Detector (OSD), and memory modules storing next-states
matrix and keywordID matrix. The NSDU supplies the current
state to next-state matrix to obtain the next state based on the
input bit. Meanwhile, the keywordID vector corresponding to the
current state will be fetched from the keywordID matrix. The
OSD determines outputting the keywordID vector if it is a valid
one.

State Processing Element
Next State Decision

KeywordID Matrix  Memory

Next State Matrix Memory

current_st
next_st_data
current_st_ address

keywordID_vector
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Figure 5: State Processing Element.

Fig. 6 (left) depicts the Next State Decision Unit, which is
responsible for reaching the next state based on the current state
and input bits. The Current State Register hold the current state.
The value is used as an address to access the row in the next-state
matrix memory. In the next cycle, the next-state matrix will give
the next states (2 next states in this example) as its output, which
are fed to the Holding Register. The multiplexer in the figure will
determine the next state based on the 1-bit input from the data
stream. Re-labeling may change the label of the entry state from
its default value ‘0’. For example, the label of the entry state in
Fig. 2 is ‘0’. After re-labeling, its label is changed to ‘8’ in Fig. 4.
Thus, the system needs to load the re-labeled initial state when
the matching procedure starts.

Fig. 6 (right) depicts Output State Detector. After re-labeling
states, the label of matching states (double circle nodes) are al-
ways less than k. For example, k=16, their label values are 0,
1, 2, up to 15. With this property, we can use a comparator to
detect whether a current state is an matching state. If so, the
Output State Detector will enable the keywordID matrix mem-
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Figure 6: Next State Decision Unit, and Output
State Detector.

ory in Fig. 5. If not, the detector will reset the Output Register
indicating no match. The benefit is that the detector reduces the
amount of accessing to the keywordID matrix memory, leading
to lower power consumption and less likelihood of performance
bottleneck. As a result, the keywordID matrix is suitable to be
put in a shared global memory.

6. PERFORMANCE EVALUATION

6.1 Memory Reduction
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Figure 7: (a) KeywordID memory reduction, and
(b)total memory reduction with the proposed opti-
mization techniques.

We first compare the memory utilization of regular state ma-
chines with those optimized with state re-labeling and memory
partition. We use Snort pattern set to evaluate the memory us-
age. Fig. 7 (a) shows the normalized memory consumption of
keywordID matrix only, where “k-Square” refers to the k×k ma-
trix and “k-Lambda” refers to the k × λ matrix. It can be seen
that up to 96.9% memory is saved by “k-Square” and 97.2% by
“k-Lambda”. Fig. 7 (b) depicts the normalized total memory
usage (keywordID + next-state matrix). The memory reduction
is again significant. Up to 20% saving is achieved when k is 8.
As k increases, the memory saving increases as the keywordID
matrix contributes more in the original state machine storage.
When k is 256, the memory reduction reaches over 80% with the
“k-Lambda” scheme.

6.2 Comparison with Existing Work
We then compared the memory usage of our optimized storage

of state machines with the results from previous research such as
Tan-Sherwood’s [10] and Brodie-Cytron-Taylor’s [3]. Approach
in [3] is based on pipelined state machine and just appeared
recently. A significant improvement is shown on the memory
density (characters/mm2) over Tan’s (however, they use newer
SRAM technology 65nm instead of 130nm in Tan’s.) We compare
our compact state machines with Tan’s and Brodie’s methods and
plot the memory requirement results in Fig. 8. We assume us-
ing the same SRAM technology and then translate Tan’s and
Brodie’s results into the bytes needed for Snort pattern set. The
memory required by Tan’s approach is estimated through simu-
lating their architecture. For Brodie’s, we estimate from the den-
sity (423 characters/mm2) and 6T SRAM (2 x 10−6mm2/bit),
both of which are from [3]. Hence, Brodie’s approach supports
846 x 10−6 chars/bit. Snort set (as of April 2004) has 25616

chars, so the memory required in Brodie’s is 3696.16KB. The fig-
ure shows that our proposed methods outperforms both Tan’s
and Brodie’s. With “k-Square” matrix, the memory consump-
tion is within 46% of [10] and 20.1% of [3], respectively. The
“k-Lambda” matrix brings the memory usage to 38.7% of [10]
and 16.9% of [3], respectively. The results can be explained as
follows. The hardware design in [10] requires all the “tiles” used
to store keywordID vectors having the same amount of rows as
next-state matrix. In fact, however, a large percentage of the tiles
are wasted for zero vectors. On the contrary, our approach uses
the keywordID matrix memory as it is needed, i.e. no memory is
wasted.
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Figure 8: Memory requirement comparison with
Tan’s and Brodie’s approaches.

7. CONCLUSION
This paper proposes novel schemes to reduce the memory re-

quired to store state machines in a linear memory space for pat-
tern matching. We propose to re-label the states in a state ma-
chine such that the matching states are clustered at the beginning
of a memory space, giving opportunities for compact storage. We
then partition state machines and use separate memory mod-
ules to store keywordID and next-state matrixes. We present
the architectural design using the proposed schemes. We evalu-
ate the performance of the optimization strategies using realistic
pattern sets from Snort [9]. The experiment results show sig-
nificant reduction (up to 80.1%) on the memory consumption of
state machines. This research can benefit the design of high-speed
pattern matching machines or pattern matching co-processors for
a wide range of applications such as network intrusion detection
and virus scanning.
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